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We consider a differential equation (which finds practical applications), containing a 
function with finite discontinuities, and its derivative. Since the equation is not defined 

on the lines of discontinuity, additional definitions are constructed for various cases. 

The supplementary definition schemes supply the information needed for a complete 
qualitative analysis of the system. Examples of such analysis are given for two different 

characteristics corresponding to two differing cases of supplementary definition. 

Equation ‘p.. + 2h[i 
- bF’(cp)l cp’ + wp) = Q, m + w = WP) (0 

encountered in practice (*) was studied often (see e. g. [l] and @]) for the case when 
F(v) has continuous characteristics. 

Here we propose a method of investigation of (1). when the characteristic exhibits 
finite discontinuities. 

Let p = v,, be one of the points of discontinuity. The system 

cp’ = y, y’ = P - F(q) - 2h[l - bF’ (cp)ly (2) 

equivalent to (1) is not defined on the line cp = v,,. Therefore, when the representative 

*) When b > 9.) Eq. (1) represents the equation of the phase automatic frequency con- 
trol (aft) with an integrating filter with delay ; when b < 0 , Eq. (1) is the equation of 
automatic control with a proportional integrating filter without delay [l] . 
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point of the system arrives at this line, its motion is no longer known and must, there- 
fore, be defined additionally. We shall do it as follows. Within the interval (cp,, - P, 
qn -I- p) we shall replace the characteristic P(cp) with a straight line connecting the 

points [%a - P, Wp,+O)l and ~~~ -I- P, F&J,, - O)], Then the system (2) will be 
replaced, on the phase plane within the strip %, - p < Q < v,, -I- p , by 

where 
2’ - . P-r P+T 

-y, y- .+ x-2ay-7 

X=cp-V& P=F(cp, -01-R r=F(cp,+O)-Sk 

a=h i+b ‘-’ 
2P 

(3) 

Let us now assume that a point whose ordinate is you, is fixed on one of the straight 
lines z = & p. We may find that the half-trajectory z = s(t, p), y = y(t, p) of the 
system (3) originating at this point at the time f = 0 and passing into the strip at all, 

sufficiently small k , may leave the strip at some c = t(p) at a point whose coordinates 

are x = p, y = y(p) (Z = - p, y = y (p)), In this case we shall use the following sup- 
plementary definition: having reached the point cp = (Pi, Y = YO, the representative 
point of the system (2) remains on the line cp = (p,, for a period of time t equal to its 

limiting value t(p) as p -+ 0, after which it continues the motion in accordance with 

(2), in ‘p > (J+., ((p < cp,,) with initial conditions cp = vn and y = iim y(p) as p 3 0. 
If, on the other band, the half-trajectory of (3) which we are now discussing lies com- 
pletely within the strip, at all sufficiently small p , then we assume that, having reached 
the point cp = cp,, y = yo, the representative point of (2) remains on the straight line 

indefinitely. These two possibilities meet all the situations encountered in practice. 

Equation of motion of the representative point along the line ‘p = Q, can in both cases 

be obtained by passing to the limit in the equations of the considered half-trajectory of 

the system (3) : y = Y(t) = lim y(t, p) as p_+ 0. 
Let us now perform some calculations using the concepts of point transformations [3]. 

Let us define (Fig. 1) on the line x = - p , two half-lines 

U(X==--p, y=u>O), U1(z=--, y=-uul<O) 

and on the line x=p, 
Y{z=IL, y=v>Ol, VlP =IL, Y= - 4 < 01 

Trajectories of the system (3) execute point transformations of the half-line U into 
the half-lines 17 and WI. We shall call these uans- 
formations T and S s respectively. 

Then 

+P(cth o=+ +)I 

)I 

(4) 

Fig. 1 b) 

gives the parametric equations of the mapping 
function for the transformation T , and 

I cthWB-+ex;+$)] 
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for the transformation S , where T and 8 are the parameters (denoting the times of 
transition of the representative point of (3) from U to V or Us,. respectively). 

We shall consider the following cases. 
1) y < 0 < p, r = Zb, h > 0. Saddle type equilibrium state of (3) is situated within 

the strip - p ( 4 < p. The corresponding pattern of phase trajectories is shown on Fig&. 
Let uo be a segment cut off the half line by the separatrix with a negative slope. The 

quantity ~0 -, rfl’ when P -, 0; Consequently, when CL is sufficiently small, then any fixed 
point u lying in the interval II > r/l will take part in the transformation T. At the same 

time the first equation of (4) defines the function 7 = T(P) implicitly, i.e. the time of 
transition from the fixed u to the half-line V. Its limiting value when or. -+ ,O will be 
(see Appendix 1) 

z = 

1 

r ln 1’~ / (rP - u)i (rS < u < r (P - r)) 
0 (u > r (P - 7)) 

(6) 

Putting ‘i = T(P) in the second equation of (4) we find the Iim v[~(p), PI as cr + 0 
(see Appendix 2). which is 

v= 
( 

0 (M < u < r (P - r)) 
u-r(j3-_r) (u>r(P-1)) 

(3) 

Let us now fix an arbitrary point on the interval I( < r& At small p , this point will 
participate in the transformation S. At the same time the first equation of (5) gives 
implicitly the function 0 = ti (p) , i. e. the time of transition from the fixed I( to the 

half-line Vi. Its limiting value as p 4 0 is 

8 = r ln[rfl / (rfl - u)] (8) 

(the proof is analogous to that in Appendix 1). 
Putting 8 = 9(p) in the second equation of (5) we find the lim u&3(~), ~1 as 14 c, 0 , 

which is u, = 0 (9) 

Let us now suppose that u = rfi is fixed, and see how the segment uo = U&L) varies 
with decreasing + ’ To do this, we shall compute 

Q+(O) = 2/3(4h’b + 1) / r (@ - 7) 

If b>- 1 / 4 h*, then, for small p , the value of ud decreases together with p, and the 

point .U = $ participates in the transformation S. First equation of (5) defines the 

function Q = 9 (p) which defines the time of transition from I( = rB to the half-line 

b) 
Fig. 2 

V,. Its limiting value as p + 0 ,Q 6 =i 00. 
This follows from the fact that 6 in (8) 

can be made arbitrarily large by choosing u 
sufficiently near to rp and from the fact 

that au / 89 > 0 in (5). 
The case b < - i/4ha can be treated in 

the similar manner. The quantity u. increases 
with decreasing ~1, and the point u = rp 
participates in the transformation T , the 
limiting time is ‘5 = 00. 

When b=- 1/4ha, we have $ G uo , the 

point u = rp lies on the separatrix at any 

value of ~1 and the time of motion requiring 
additional definition, is infinite. 

When u < r(p - y) we require, in addition, 
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an equation of motion of the representative point along the straight line cp = (pn. This 

equation will be, for any u , y = Y(t) I 0 (10) 

Fig. 2a shows the resulting scheme of additionally defined motions on the upper part of 
the straight line 9 = cp,. To make the picture clearer, we have spread the overlapping 

trajectories in the horizontal direction. On reaching the point 9 = (P,,, Y = u, u > 
> r(b - ‘y), the representative point of (2) effects an instantaneous jump as defined by 

(7) and continues its motion in cp > q,, in accordance with the system (2). 

If rfi < u < r (/j - y), then the representative point jumps instantaneously to the 
point u = 6 , remains there for the period of time defined by (6). and then resumes the 
motion in cp > (Pn. 

When u = rp, the representative point jumps instantaneously to the point cp = (P,,. 

Y = 0 and remains there indefinitely. This is what the motion along the separatrix of 
the saddle point of (3) degenerates to, when p + 0 . We shall say that this motion pro- 

ceeds along the separatrix of the equilibrium state “p = q+,, y = 0. 
If u < rj$ then the representative point jumps instantaneously to the point IL, = 0, 

remains there for the @eriod of time given by (8), and resumes the motion in 9 < v,, (*). 

Symmetry considerhtions imply that, if we replace in the above scheme u by I+, u 
by hL,, fl by Y and vice versa, then the resulting scheme of the additionally defined mo- 
tions will apply to ehe lower part of the straight line cp = (P,,. 

2) p < 0 &, r < 0. The equilibrium of (3) at small p is a stable node lying on the 
strip - p < z < p. .Fig. lb shows the corresponding pattern of phase trajectories. 

Let uo = h(p) be a segment cut off the half-line U by a trajectory passing through 
thepoint z=p,y= 0. When 1~ -+ 0 (see Appendix 3), uo(p) -+ r(p - y) and 
am’ r, -I- 00. Therefore when u > r(fJ - y) the calculations coincide with the corre- 

sponding calculations performed in Section 1. If, on the other hand, the half-trajectory 

of the system (3) originates at the segment u ( r(fl-y), then it lies, for small p , com- 
pletely within the strip - p < z < p, and the time of the corresponding additional 
motions is 00. The equation of motion along the straight line ‘p = (P,, is Eq. (10) just as 

in the case (1). 

The pattern of motions on the upper part of the straight line cp = q+, defined addition- 

ally, is shown on Fig. 2b. On reaching the point a, = q~,, y = U, u > r(fl - y), the repre- 
sentative point of the system (2) effects an instantaneous jump as defined by (7) and con- 
tinues to move in cp > (P,, in accordance with the system (2). 

When u Q r@ - y) , the representative point jumps instantaneously to the point 

‘p =a. 1’ 0 and remains there indefinitely. We shall say that these motions tend to 
the state of equilibrium cp = (Pi, y = 0, which is a degenerate form of the node of (3) 
when p-, 0.. 

Symmetry considerations imply, that, if we replace in the system under discussion, P 
by us and u by I+, then the resulting system of motions will take place on the lower 

*) Equation (1) can be rewritten as 

cp” -I_ 2hp’ = rz*- 2, I = F(Q) - n 

and the Aizerman and Gantmakher [4] discontinuity conditions applied. 
When u > r(fi - y) we obtain the power line of (7). The discontinuity conditions 

cannot however be applied-when a~ < r (p - y) . 
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part of the straight line cp = cp,. 

3) 0 < y < /$ r > 0. System (3) has a saddle type equilibrium situated to the right of 
the strip - p < z < p. 

We show the resulting pattern of motions on Fig.Pc, while omitting the relevant com- 

putations. On reaching the point cp = v,, y = U, u> r(8 - y) the representative point 
of (2) effects an instantaneous jump as defined by (7) and continues the motion in 
‘p > (P,, in accordance with the system (2). 

If u < r(b - y), then the representative point jumps instantaneously to I+= 0 remains 
there for the period of time defined by (8) and continues its motion in cp < r&. When 
the representative point of (2) reaches the point cp:= (P,,, y = u,, z+ > r (8 - y), it effects 
an instantaneous upward jump in accordance with the equation u1 = V, >, r(p - y) and 
continues its motion in ‘p < rp, in accordance with the system (2). 

If z+< Qt- y), then the representative point jumps instantaneously to the point u1 = 0 

and remains there for the period of time given by T = r In I$/ (ry + 4)) , after which 
it continues its motion in cp < qn. 

4) 0 < /J < y, r < 0. At small p the system (3) has a stable equilibrium in the form 
of a node situated to the left of the strip - p < z < p. The scheme of supplementary 
motions is identical to that of the case (3). 

Cases (5) fl < y < 0, r < 0 and (6) y < p < 0, r > 0 can be obtained from the 
cases (4) and (3), respectively, by replacing fi with -y, u with q, v with u,.and vice 
versa. 

The above six cases yield six more, corresponding to the change of the sign of r, 

replacement of t3 with -y, r with-r, u with V, u1 with u, and vice versa. 
Thus, considering the point transformations of the straight lines cp = cp,, into themselves 

and one into the other effected by the trajectories of the system (2), we &an perform the 
qualitative analysis of the system for some specific characteristic F(cp) with discontinu- 
ities. 

E x a m p le 1. [5]. Let F(v) be a Bn-periodic function such that FCcp) = rp / JX when 

-ax < cp < rc and 0 < I;2 < 1. This example illustrates the first case of supplementary 
definition. 

We shall take the strip bounded by two straight lines cp = --n and ‘p = n as the phase 

space. By making the points on these lines coincide for the same values of ordinates we 
find, that the point of discontinuity of the characteristic is situated at the seam of the 

cylindrical phase space. 
Next we shall ascertain the existence of a limit cycle encompassing the phase cylin- 

der and situated within its upper part y > 0. To do this, we shall select on the straight 
line cp = ---IT a half-line V {cp = -n, .y = v > O} , and on the line cp = 37 , a half-line 

uQ# = X, y = u > 0) and consider a point transformation of the half-line V into the 
half-line U effected by the trajectories of (2). Putting 

hl=h(n--)/JG, 01= 1/i- @, kl=hllol 

we find, that, when 0 < h, < 1,. then the parametric equations of the mapping function 
of this transformation will be 

u/ v/n= o,(l - 52) exp (k,ll) / sin tl + (1 + Q) (0, ctg tl + hl) 
u I i/z= o,(i + Q) exp(- k,q) / sin tl f (1 - 8) (0, ctg q - /a,) 

its derivatives 
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dv/du = exp (2k,q) u / v 

d% / dua = Jr/;isin q exp (3 k,q) [(I - Q)v .- (i + Q) ‘u] / 0,3 

and its asymptotic behavior will be given by 

v=u+41/;;hl 

Fig. 3 shows the curve u = u(v) for a = In [(i + Q) / (i - Q)] > k,x , together with 

Fig. 3 

I 
I 
I ‘i- w 

I r 

Fig. 4 

Eliminating Q, we obtain 
/ 

the broken line 

v = v (u) = 
1 

u--r when u>2r 

0 when r (1 -Q)<u<2r 

the latter representing the mapping function of the 
transformation of the half-line cp = JT, y > 0 into it- 

self, effected by the supplementary motions and con- 

structed according to Formula (7). Fig. 3 illustrates the 
case when the curve and the broken line have a common 

point on the horizontal part of the broken line. This 
means that a limit cycle exists on the phase cylinder, 
and the representative point moving along this limit 

cycle will come to rest at the point cp = x, y = 0 for 
the period of time defined by the first line of Formula 
(6). We easily see that this is the only possible cycle 
and, that it is stable. When i’ increases, the point of 
intersection of the curve with broken line approaches 
the initial point of the latter, and this corresponds to the 
merging of the cycle into the separatrix forming a loop 
(the separatrix emerging from the state of equilibrium 
(n, 0) and returning to it). The corresponding bifurca- 
tion surface in the parametric ( r, h,, a)-space is defined 

by the equations v(q) = 0. 

a = kl I n - arctg 

When r decreases, the point of intersection of the curve with the broken line passes 

to the inclined part of the latter. This corresponds to the transformation of the cycle 
“stopping” at the point (n, 0) , to the cycle without a “stop”. The surface separating, in 
the parametric space, the domain of existence of the cycle with a stop from that of the 
cycle without a stop, is given by 

U(V) = 2r, v (q) = 0 

These equations can be rewritten as 
r =, Jf/nsin q/ [ol exp (kl~$ - 01 cos q -hJ 
a = ICI~ - In (- cos q -kl sin q) 

and regarded as the parametric equations of the intersection of the surface with the plane 
h, = const. 

Fig.4 shows how the plane h, = const intersects the parametric space. If the parame- 
ter values correspond to the region below the lower curve then the system has no cycles. 
the region between the curves corresponds to the cycle with a stop, and the region above 

the upper curve corresponds to a cycle without a stop. 
Continuing the investigation we find, that, for a selected region of the parametric 
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space defined by 0 < ir, < 1, a > k, n, r > 0 , the system has no cycles enveloping 
the cylinder when y < 0 , nor any cycles not enveloping the cylinder. Qualitative repre- 
sentation of the phase trajectories of the system for the case of a cycle with a stop, is 
given on Fig. 5. 

Fig. 5 Fig. 7 

Example 2. This differs from Example 1 in the signs of F(q) and r and illustrates 
the second case of supplementary definition. 

Equations of the mapping function u = u(u), its derivatives and its asymptotic behavior 

can be obtained from the corresponding equations of Example 1, by putting $= h(n!+,b)/ 

/I/n, w, = J/l + b?, replacing B with - bd, trigonometric functions with the corre- 
sponding hyperbolic functions and putting a minus sign before the second order derivative. 

To obtain all the values of u and u , we must vary 9 from 0 to 00, u. from OQ to 

V, =1/Z(1 - sa) (or + IL&, and u from 00 to ri, = I/n (1 + 8) (ol - hr), where V, 
and u, denote the segments cut off from the half-lines I’ and v respectively by the sepa- 
ratrices of the saddle type equilibrium (- nSZ, 0). The curve u = u(u) is shown on 

Fig. 6, together with the straight 1ine.v = u + 2r, representing the mapping function of 
the half-line rp = a-c, y >O into itself effected by the additionally defined motions, 

Fig.6 illustrates the case when the curve and the straight line intersect. This means 

that a limit cycle exists on the phase cylinder. This cycle is the only one possible and 
it is stable. When r decreases, the straight line moves from the left to right and, at 
some r , the point of intersection reaches the point (u,, v,). At the same time the limit 

cycle merges into the saddle separatrix (--nQ, 0) forming a loop. The corresponding 
bifurcation surface in the parametric (7, h,, 52 )-space is given by 

V. = u, + 2r, or 52 = - r/(f&)+h,/6h 

This is a ruled surface formed by straight lines parallel to the plane h, + 0. The region 
of the parameter values satisfying the inequality 

a>-rl(C4+U% 

corresponds to the case, when a cycle is present. 
Moreover we see, that there are no cycles enveloping the cylinder when y < 0, and 

there are no cycles not enveloping the cylinder in the parametric region defined by 

k,>O,r<O, O<Q<l . Fig. 7 gives the qualitative pattern of phase trajectories 
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for the case when a limit cycle exists. 

Appendix 1. Let rfi < u < r(fi - v). Since the function u = u(r, p), given by 
the first equation of (4) does not exist at p = 0, we shall supplement its definition by 

its limit value as p -, 0. The resulting function 

when p>O 

‘(“IL)= (r[j3-~~p~)--r/r)) when p=O 

satisfies the following three conditions : when it is continuous; if r~ = r lnlry / (rfi - u)], 
then f(ro, 0) = u ; and when its derivative a/ / az < 0. 

Consequently, with u fixed on the interval under consideration, Eq. u = /(t, p) defines, 
in some vicinity of the point (TO, 0) ,a single-valued continuous function T = T,(P) such, 

that ~.(O)=TO. Since r(p) G T, (p) for p # 0, then lim ~(11) = T,, for p + 0. 
Let us now suppose that u > r@ - y). Since au / at < 0, the function T = r(p), corre- 

sponding to the fixed u on the interval considerd, is .bounded from above by the function 
‘t = ‘F(P) corresponding to any U’ fixed on the interval rfi < I( < r(fJ - y), and this 
boundary function can be made as nearly equal to zero when p --, 0 as required, by 
choosing u sufficiently near to r(fl - y). 

Appendix 2. When rfi < u < r@ - y) , this limit value can be found by direct 
substitution of the limit value of r(c(). If u > r@ - r), then we make the substitution 
x = OT in (4). When I( is fixed and p are small, then the first equation of (4) defines 

the function’% = x(p) such, that 
limx(p)=+ ln,_,1;;_,, 

(the proof is analogous to that, givL:in Appendix 1). Putting now x = x (p) in the second 

equation of (4) we find, that, as. p -P 0 , lim v [x (p), JL] = u - r (p - y). 
Appendix 3. We shall consider the function u. = I( [T(P), p],where T = r(p) is a 

function defined by Eq. v(z,p) = 0. Since lim u (7, p) = - 0 when p -N 0 and 
lim ~(7, p) = i- 00, when r + 0, it follows that r(p) -9 0 as p -9 0. Let us put x = Or. 
Then uo = u [x(p), p], where x = x (p) is a function defined by the equation V(X, p)=O. 
Since lim u (x, CL) = r(fi - y) / (exp 2x - 1) > 0 when p + 0 and lim u (x, p) = 

=-220p(i--alo)/@-y)<Owhenx+a, , it follows that % (p) + 00 as p-, 6. 
Therefore 

lim expaf (PI 
= lim 

2 
P-.,, sh OX (P) P_+o exp [(a - 4 r WI - exp I- (I+ a / 0) x (Ml = 2 

(Fl$ (0--)=1/r, lilia/a=l) 

Since 
au -=- ax 

and when u = u. then u = 0, we have 

duo au0 au0 dx au0 v=- dp ap fax&-=-= 

and 

asp +o ( lim 
P-+0 

(0~)’ = h_ + + , 
a ’ 

lim w 
( > 

=- 
P+o ra (P”- 7) >O) 
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Method of consecutive approximations is used to construct a rotational-oscillatory solu- 
tion of a general system with a parameter, and its stability is studied on the basis of the 

well-known theorems of the First Liapunov Method. Earlier, analogously stated problems 
were investigated in connection with the periodic or oscillatory solutions in the system 

with small parameters. 
We investigate a system whose general form is 

az, / dt = F,(& q,..., Zn* A) (f = i,..., n) (1) 

where t E [to. m) is an independent variable and h E [&, ha] is a numerical parameter 
whose value is, in general, not small. We assume that real functionspi satisfy the follow- 

ing conditions. 
1)Functions F{ are defined for all t’~ [so, m),continuous and T-periodic where T,is 

constant and independent of h. 
2)Functions Fi are periodic in zr,..., zr, (0 < P < d with periods Tl,.*.., Tp, respec- 

tively, the latter also independent of A. 
3) Functions Fi have partial derivatives of first and second order in Al,..., zp and h 

satisfying the Lipschitz conditions, with constant independent of t in the vicinity of a 

point belonging to some region G of the variables z{ and & E 14, &J unbounded in the 
coordmates $I,..., zp 


